banner

Blog

May 31, 2023

What is Natural Language Processing? An Introduction to NLP

Natural language processing (NLP) is the ability of a computer program to understand human language as it is spoken and written -- referred to as natural language. It is a component of artificial intelligence (AI).

NLP has existed for more than 50 years and has roots in the field of linguistics. It has a variety of real-world applications in a number of fields, including medical research, search engines and business intelligence.

NLP enables computers to understand natural language as humans do. Whether the language is spoken or written, natural language processing uses artificial intelligence to take real-world input, process it, and make sense of it in a way a computer can understand. Just as humans have different sensors -- such as ears to hear and eyes to see -- computers have programs to read and microphones to collect audio. And just as humans have a brain to process that input, computers have a program to process their respective inputs. At some point in processing, the input is converted to code that the computer can understand. There are two main phases to natural language processing: data preprocessing and algorithm development.

Data preprocessing involves preparing and "cleaning" text data for machines to be able to analyze it. preprocessing puts data in workable form and highlights features in the text that an algorithm can work with. There are several ways this can be done, including:

This article is part of

Download this entire guide for FREE now!

Once the data has been preprocessed, an algorithm is developed to process it. There are many different natural language processing algorithms, but two main types are commonly used:

Businesses use massive quantities of unstructured, text-heavy data and need a way to efficiently process it. A lot of the information created online and stored in databases is natural human language, and until recently, businesses could not effectively analyze this data. This is where natural language processing is useful.

The advantage of natural language processing can be seen when considering the following two statements: "Cloud computing insurance should be part of every service-level agreement," and, "A good SLA ensures an easier night's sleep -- even in the cloud." If a user relies on natural language processing for search, the program will recognize that cloud computing is an entity, that cloud is an abbreviated form of cloud computing and that SLA is an industry acronym for service-level agreement.

These are the types of vague elements that frequently appear in human language and that machine learning algorithms have historically been bad at interpreting. Now, with improvements in deep learning and machine learning methods, algorithms can effectively interpret them. These improvements expand the breadth and depth of data that can be analyzed.

Syntax and semantic analysis are two main techniques used with natural language processing.

Syntax is the arrangement of words in a sentence to make grammatical sense. NLP uses syntax to assess meaning from a language based on grammatical rules. Syntax techniques include:

Semantics involves the use of and meaning behind words. Natural language processing applies algorithms to understand the meaning and structure of sentences. Semantics techniques include:

Current approaches to natural language processing are based on deep learning, a type of AI that examines and uses patterns in data to improve a program's understanding. Deep learning models require massive amounts of labeled data for the natural language processing algorithm to train on and identify relevant correlations, and assembling this kind of big data set is one of the main hurdles to natural language processing.

Earlier approaches to natural language processing involved a more rules-based approach, where simpler machine learning algorithms were told what words and phrases to look for in text and given specific responses when those phrases appeared. But deep learning is a more flexible, intuitive approach in which algorithms learn to identify speakers' intent from many examples -- almost like how a child would learn human language.

Three tools used commonly for natural language processing include Natural Language Toolkit (NLTK), Gensim and Intel natural language processing Architect. NLTK is an open source Python module with data sets and tutorials. Gensim is a Python library for topic modeling and document indexing. Intel NLP Architect is another Python library for deep learning topologies and techniques.

Some of the main functions that natural language processing algorithms perform are:

The functions listed above are used in a variety of real-world applications, including:

Research being done on natural language processing revolves around search, especially Enterprise search. This involves having users query data sets in the form of a question that they might pose to another person. The machine interprets the important elements of the human language sentence, which correspond to specific features in a data set, and returns an answer.

NLP can be used to interpret free, unstructured text and make it analyzable. There is a tremendous amount of information stored in free text files, such as patients' medical records. Before deep learning-based NLP models, this information was inaccessible to computer-assisted analysis and could not be analyzed in any systematic way. With NLP analysts can sift through massive amounts of free text to find relevant information.

Sentiment analysis is another primary use case for NLP. Using sentiment analysis, data scientists can assess comments on social media to see how their business's brand is performing, or review notes from customer service teams to identify areas where people want the business to perform better.

The main benefit of NLP is that it improves the way humans and computers communicate with each other. The most direct way to manipulate a computer is through code -- the computer's language. By enabling computers to understand human language, interacting with computers becomes much more intuitive for humans.

Other benefits include:

There are a number of challenges of natural language processing and most of them boil down to the fact that natural language is ever-evolving and always somewhat ambiguous. They include:

NLP draws from a variety of disciplines, including computer science and computational linguistics developments dating back to the mid-20th century. Its evolution included the following major milestones:

Natural language processing plays a vital part in technology and the way humans interact with it. It is used in many real-world applications in both the business and consumer spheres, including chatbots, cybersecurity, search engines and big data analytics. Though not without its challenges, NLP is expected to continue to be an important part of both industry and everyday life.

Although there are doubts, natural language processing is making significant strides in the medical imaging field. Learn how radiologists are using AI and NLP in their practice to review their work and compare cases.

Tokenization . Stop word removal. Lemmatization and stemming. Part-of-speech tagging. Rules-based system. Machine learning-based system. Parsing. Word segmentation. Sentence breaking. Morphological segmentation. Stemming. Word sense disambiguation. Named entity recognition . Natural language generation . Text classification. Text extraction. Machine translation. Natural language generation. Precision. Tone of voice and inflection. Evolving use of language . 1950s. 1950s-1990s. 1990s. 2000-2020s.
SHARE